Minilog MCC

Programming Manual for MCC

Manual 1240-A007 EN phyftron

Extreme. Precision. Positioning.

phytron

Programming Manual MINILOG
for the Controllers
MCC-1, MCC-2 and MCC-2 Lin

TRANSLATION OF THE GERMAN ORIGINAL MANUAL

1/2015 MA 1240-A007 EN

MINILOG

Version Modification

7 p.29 Bit O corrected
Parameters P40 to P42 (MCC-2 LIN) added
valid from serial number 15XXXXXXXX

© 2015

All rights with:

Phytron GmbH

Industriestralle 12

82194 Grbbenzell, Germany
Tel.: +49(0)8142/503-0

Fax: +49(0)8142/503-190

Every possible care has been taken to ensure the accuracy of this technical manual. All
information contained in this manual is correct to the best of our knowledge and belief but cannot
be guaranteed. Furthermore we reserve the right to make improvements and enhancements to the
manual and / or the devices described herein without prior notification.

We appreciate suggestions and criticisms for further improvement. Please send your comments to

the following E-mail address: doku@phytron.de

MA 1240-A007 EN 2

mailto:doku@phytron.de�

phytron

Contents
1 Structure of the Minilog INSTFUCHIONScoviviiiiii e e 4
1.1 INSIFUCTHION COUR ..ttt e et e e e e e e s s e e e e e e e e eans 4
1.2 Design of MINILOG PrOgramScoiiiiiiiiiiiiiiieeee et 5
1.3 AdAreSSIiNG MOEoovuuiiiii e e e e e 5
14 ConditioN@l INSIFUCHIONSeiiieiiiiiiiiie et e e e e e e e e s enees 6
15 Data and Telegram FOIMALouiiii e 7
2 MINILOG INSIFUCTIONS ..etitiiiiiiiiiiiiiiiiiiiittieitieeeieteeee et 9
2.1 L 1311 11 £ 9
2.2 F I 0o 1Y/ o (= PP 10
2.3 S]] TSP PPPPPPRPPRN 10
2.4 Write Instructions via Serial Interface ... 10
2.5 g o0 [=T (U= PP 11
2.6 Program Manipulation at Emergency Stop (ONLY PROG)........cccccvveeeeeiiiiniiiiieeeen. 13
2.7 g roTe =T g 0T 1] (=T ¢ {01 o] 1] o I 13
2.8 System Adaption during Program EXECULION...........uuuuuuiiimi e 13
29 Jump INStructions (ONLY PROG)uuiiiiiiiiiiiiiiiiiiiieie ettt 15
2.10 Repeating of Program LiNES.........coo oo 16
200 PASSWOIL. ..ottt ettt e e e e ettt et e e e e e eeeerba e e e aaeeennn 17
2.12 Ending or Interruption of a Program Call (ONLY PROG)ccccccvvviiiiiiiiiiii, 17
2.13 Program and Data Management (ONLY PC).......ccccuiiiiiiiiiiiiiiiiieeeeee e 18
I S L= T 11 = S 20
2.15 Register INSrUCHIONS.......cooi i 21
2.16 System StatuS (ONLY PC)uiiiiiiiiiiiiiitiii ettt 29
2.17 Store Data into Flash EPROM ..., 31
218 TIME LOOPS ..o 31
2.19 Subroutine€S (ONLY PROG)cettiiiiiiiiiiiiiiiiie ettt 32
2.20 Terminal Instructions (also by PC in case of terminal connection).......................... 33
221 AXES INSITUCTIONS ... 34
2.22 Function Keys Read Out on Terminal BT24 (also by PC).........cccooeeiiii. 38
3 List Of Minilog INSTIUCLIONSuuuiiieii e e e e e e e e e e e e e e e e e e e aeeeaeens 39
4 LiSt Of DIN INSIFUCTIONS. ...ttt a eeas 43
O PAIAIMELEIS ...ttt ettt e e s 46
51 (IS A = = 10 4= (= £ 47
5.2 Parameter Set Transmission to the Controllereviiiiiiiiiiiiieiiiiiiiiiiiieeeees 51
6 Programming EXAMPIEoouuiiiiiiiiieie e 52
6.1 LCT=T 1= =1 SR 52
6.2 F I 0o] 1Y/ T (= R 52
7 Storing Programs, Parameters and ReQISLErScoviiiiiiieiiiiiii e 53
8 CUIMENt SNAPING €S e e e 54
S 1 0T 1 55

3 MA 1240-A007 EN

MINILOG

1 Structure of the Minilog Instructions

1.1 Instruction Code

Xrvalue

Example: X+1000

Important:

Exception:

MA 1240-A007 EN

X

value

The bold characters represent the instruction code and must
be used unchanged.

In this example: X represents the motion instruction code for
relative positioning of the X-axis.

This manual shows only the instruction codes for the
single axis controller (MCC-1), where the axis is generally
named “X".

For multiple axis controllers (also Master/slave up to 8
axes) the corresponding characters X, Y,...or 1, 2, ...
must be used.

Small letter require the input of the characters or values
which are described in the column Meaning.

In this example: r = running direction + or — .

In this example a running distance of 1000 is fed in. The
corresponding unit (e.g. steps) of the particular input is
defined by parameters. For the specific parameters refer to
chap. 5.

Relative motion instruction for the X-axis:
Go 1000 steps to the + direction.

All characters and signs, belonging to one single
instruction, must be written without a blank.

The instructions themselves must be separated by a
blank.

Leading zeros in an instruction are ignored
(Example: the instruction AO01S is realized as A1S)

Instructions, which cannot be used in the program and
direct mode, are marked with:

1. Instruction only used in the program (ONLY
PROG)

2. Instruction only used in the PC direct mode
(ONLY PC)

In the instruction group “System Status (ONLY PC)”, chapter 2.12,
the first program name must be separated by a blank from the
second program name or the following alphanumeric part of the
instruction code.

phytron

1.2 Design of MiniLog Programs

e MiniLog programs consist of up to 2000 program lines. The program lines are
numbered consecutively by MiniLog-Comm.

e The single instructions in each line must be separated by blank characters.

e Do not insert extra blank characters within an instruction.

e The instructions will be executed serially.

e By means of the line numbers jump instructions or subroutines can be defined.

e Parameter and register values should be defined at the beginning of a program.

e Line, parameter and register numbers may be entered with or without preceding zeros.
Example: RO001 or R1

e Aline break is used in the program by a carriage return (CR) : 0xOD

Example: A1S T500 A1R 0x0D
A2S T500 A2R 0x0D

All programming instructions are assembled in the MiniLog programming manual.

1.3 Addressing Mode

For instructions, where at least one register is used as an operator, two addressing modes
are available: The Direct Addressing Mode and the Indirect Addressing Mode. In this
programming manual the meaning of the basic instruction is always explained for the
Direct Addressing Mode. The variations of the Indirect Addressing Mode are listed for
the sake of completeness. The first named register within an instruction code is always the
destination register for the result.

Example for Direct Addressing Mode:

Instruction Meaning

RnnBEnn—mm The status of the inputs nn to mm is written as a binary value into the
register nn.
Example: R1BE1-8

Status of the inputs 1 to 8 is e.g. 1010 0101. This binary value is
written into the register 1. After the Instruction was carried out, the
register content is 165 decimal.

5 MA 1240-A007 EN

MINILOG

Example for Indirect Addressing Mode:
Instruction Meaning

R[Rnn]BEnn—-mm Indirect Addressing Mode:
The status of the inputs nn to mm is written as a binary value into the
register which is addressed by the register [Rnn].

Example: R1S10 [R1]BE1-8

The addressing register [R1] is set to 10. The status of the inputs 1 to
8 is e.g. 1010 0101. This binary value is written into the register 10,
which was addressed by the register 1. After the instruction was
carried out, the content of the register 10 is 165 decimal.

Adressing with Label

In case of jump calls (page 15) and subroutine calls (page 32) the start or destination line
can be set in the instruction code with a label (*la*), which is assigned to this program line.
A label is defined between two * and can have up to 6 alphanumeric signs. Max. 100
labels can be used in one program.

Example: *[label name]*
Program name:

Program names [name] in the instruction code can have up to 8 alphanumeric signs.

1.4 Conditional Instructions

The execution of some instructions (e.g. jumps or subroutine calls) can be combined with
a condition. Before a conditional jump etc. can be used, the condition byte has to be set,
for example by an input request (see chap. 2.5) or a register comparison (see chap. 2.14).

Possible states of the condition byte:
E = Condition fulfiled N = Condition not fulfilled
The state of the condition byte remains stored until it is changed again.

All instructions which set no condition delete the condtion request.

MA 1240-A007 EN 6

phytron

1.5 Data and Telegram Format

Data format: No Parity
1 Stopbit
8 Bit ASCII-Code
57 600 Baud

The send telegram from PC via RS232 is defined as:

Without
check- <st™x=| Address | Instruction | <eTx>

sum:

With
check- <sST™x> | Address | Instruction | Separator | Checksum | <eTx>

sum.

The response telegram (always for address 0-9, A-F) is defined as:
<s7x> | ACK | Answer | <eTx> or
<stx> | ACK | <eTx> or

<s7x> | NAK | <eTx>

Meaning

<STX> <sTx> (Start of Text, 024): It is exclusively used as the start code for a new
telegram

Address | Address of the controller, the range of the address byteis0to 9 and Ato F
(304...394 and 414...46). Additional the Broadcast® address @ (40y) is used.

Instruction | MINILOG instruction code

Separator |: Colon (3Ay) as separator, to distinguish between usable data and
checksum.

Checksum | Upper byte of the checksum value (see below for the algorithm to calculate
the checksum)

Lower byte of the checksum value (calculation see below)

<ETX> (End of Text, 03y) this code indicates the end of the telegram.
ACK (Acknowledge 064), the instruction has been confirmed.
NAK (Negative Acknowledge 15y), the instruction has been negatively confirmed.

Answer Answer as number or string, f.ex. Eor N

! Broadcast: All axes receive and evaluate the telegram. To avoid bus-conflicts caused by the response of
all axes nearly within the same time, the response of the controllers is suppressed by addressing with “@”.

7 MA 1240-A007 EN

MINILOG

The checksum CS is defined by summing up all bytes, beginning with the address byte
and including the separator (:) in an exclusive-OR-operation:

CS = address @ data byte 1 ® data byte 2 . . . ® data byte n @
separator

The checksum is calculated as one 8-bit binary value (004 to FFy). This byte is taken apart
in its upper and lower byte (nibbles). After the HEX values of the two nibbles have been
transferred to the corresponding two ASCII characters (0 to 9 instead of Oy to 94 and

A to F instead of Ayto Fy that means to each nibble 30y or rather 37y is mathematically
added) the checksum is written in the telegram.

The MCC also calculates (Exclusive OR) the checksum of the received data. The telegram
will be rejected if a difference to the received checksum is detected, and the error is
confirmed by NAK.

If there is no need to validate the contents of the telegram, the checksum monitoring can
be set off. Instead of the checksum bytes, two X characters will be accepted, e. g.:

<sstx=] L | X] +]11]10]JO0] :] X] X <eTx=

MA 1240-A007 EN 8

phytron

2 MINILOG Instructions

2.1 Outputs
Instruction Meaning
Set Outputs
Annnz Set one or several outputs at the same time.
nnn, mmm, xxx — number (ID) of the output
Annnzmmmzxxxz z =S — set
Z=R > reset
Example: A1S2R3S
Output 1 and 3 ON, output 2 OUT
Read Output Status
AGnR Read the state of the output groupes n. (ONLY PC)
Example: AG2R
The 2nd output groupe is read
Response : <STX><ACK>nnnnnnnn<ETX> (ONLY PC)
n = 0 Output OFF
n = 1 Output ON
Set the output group outputs
AGnSzzzzzzzz Set the output group n=1 or 2, z= 0 or 1.

ARNNN;mmm;xxx

z must always have 8 places

Example: AG1S10101001

The 1. output group is set with the information ‘10101001
Read Output Status

The state of the outputs nnn, mmm, xxx is read. (ONLY PC)
Response : <STX><ACK>nnn<ETX>

n = 0 Output OFF

n =1 Output ON

Important: Set a, between the output numbers.

9 MA 1240-A007 EN

MINILOG

2.2 A/D Converter

Instruction Meaning

ADNR A/D converter setting is read.
n— A/D converter address: n=1 or n=2

Response : <STX><ACK>[0 to 1023]<ETX> (ONLY PC)
0t01023=0to5V

2.3 Reset

Instruction Meaning

CR The controller is reset by the interface.

CT The display of the terminal is deleted via interface.

Response : <STX><ACK><ETX> (ONLY PC)

2.4 \Write Instructions via Serial Interface

Instruction Meaning

Informations can be carried out via the 3 serial interfaces (X31, X32, X9).
The writing is carried out without formatting.

s = 1 — interface nameRS232 /Com X5)

Ds <text> The bracketed expression is carried out.
DsRnn The content of the register nn is carried out.
DsR[RNN] The content of the register which is addressed by register nn

is carried out.

DsxPmm Parameter mm of the axis x is carried out.
mm = 1 to 45 — number (ID) of the parameter
x=1to8or XY, ZW,)5,6,7,8 - axis ID

Example: D24P10
The parameter 10 of the axis 4 is carried out via the interface X32 .

MA 1240-A007 EN 10

phytron

2.5 Input requests

Instruction

Meaning

EAnnzmmzxxz

Evnnzmmzxx

Ennz

Logical AND

The inputs nn, mm, xx are tested as AND condition.
Only if the AND condition is fulfilled the condition byte is set.
Otherwise the condition byte is reset.

nn. mm. XX — input number
z= S — input ON
z= R — input OFF

Example: E"1S2R3S

The input states 1, 2 and 3 are read out. If input 1 is set, input 2 reset and
input 3 set, the AND condition is fulfilled and the condition byte is set.
Now a conditional jJump or a conditional call of a subprogram can be
carried out.

Response: <STX><ACK> E <ETX> or
<STX><ACK> N <ETX> (ONLY PC)

Logical OR

The inputs nn, mm, xx are tested as OR condition.
Only if the OR condition is fulfilled the condition byte is set.
Otherwise the condition byte is reset.

nn. mm. XX — input number
z= S — input ON
z= R — input OFF

Example: Ev1S2R3S

The input states 1, 2 and 3 are read out. If input 1 is set or input 2 reset
or input 3 set, the AND condition is fulfilled and the condition byte is set.
Now a conditional jump or a conditional call of a subprogram can be
carried out.

Response: <STX><ACK> E <ETX> or
<STX><ACK> N <ETX> (ONLY PC)
Wait for Condition Fulfilled

Wait for the preset input condition.
The program stops until the preset input condition is fulfilled. The
condition byte is not affected. (ONLY PROG)

11 MA 1240-A007 EN

MINILOG

When reading the status of several inputs, one input after the other is
read out (no AND linking). The condition byte is not affected. (ONLY

Example: E1S2R3S

The status of the inputs 1, 2 and 3 are read.

After the input 1 is set, the input 2 is read. After the input 2 is reset, the
input 3 is read. After the input 3 set, the reading Instruction is done and
the program continues. After the instruction end the inputsl and 2 can
have another state.

Definition of the inputs and outputs only for MCC-1

The MCC-1 controller has eight digital inputs and outputs, electrically
insulated and bidirectional. Which I/Os are input or output can be defined
by the user via MiniLog programming.

n = allocation — input or output

Example: EAS00000011
1 to 6 are outputs, 7 and 8 are used as inputs.

Read input group

Instruction Meaning
Ennzmmz

PROG)
EASnnnnnnnn

n=1-— input

n =0 — output
EGnR

ERNN:mm;xx

MA 1240-A007 EN

The input group nis read. (ONLY PC)
n=1to 8

Response : <STX><ACK>nnnnnnnn<ETX>
n = 0 input is reset
n =1 inputis set

The Status of the inputs nn, mm, xx is read (ONLY PC).

Response: <STX><ACK>nnn<ETX>
n = 0 input is reset
n =1 input is set

Important: Set a ; between the input numbers.

12

phytron

2.6 Program Manipulation at Emergency Stop (ONLY PROG)

Instruction

Meaning

FNznr

FN*lax*

FP[name]

The program line is defined at which the program has to be continued in
the case of an emergency stop.

The program line, at which the program has to be continued in the case
of an emergency stop, is defined by a label.

Indicates the program for an emergency stop. In the case of an
emergency stop, a jump to the named program is initiated.

2.7 Program Interruption

Instruction

Meaning

H

The program waits here until all axes have stopped. (ONLY PROG)

2.8 System Adaption during Program Execution

Instruction

Meaning

IAR

IBSname

IBR

ICnSbaud

IChR

Number of Axes

The number of existing axes is requested (ONLY PC).
Response: <STX><ACK>n<ETX>

Automatic Start

The name of the start program is written into the Auto Start register. If the
REMOTE/LOCAL switch is in the LOCAL position the program execution
starts here.

Response: <STX><ACK><ETX> or
<STX><NAK><ETX> (ONLY PC)

The name of the Auto Start program is read (ONLY PC).
Response: <STX><ACK>name<ETX>

Read/Set Baudrate (ONLY PC)
Set the baudrate for the MCC interfaces.

n=1— COM1of MCC
baud = Baudrate (9600, 19200, 38400, 57600 or 115200 Baud)

Baudrate setting of the MCC interfaces is read out.
n=1—- COM1of MCC

13 MA 1240-A007 EN

MINILOG

Instruction

Meaning

IFR

IFL

IPn

ITR

ITSn

ITTSn

IVR

MA 1240-A007 EN

Remote/Local Reversing (ONLY PC)

The controller is reversed to the Remote function. If a program is
running, it is canceled. If the switch is positioned to Local, the position
Remote is simulated.

Response: <STX><ACK><ETX>

The controller is reversed to the function Local, if the Remote/Local
switch is on the position Local. If the switch is on Remote position, it is
not reversed.

Response: <STX><ACK><ETX>

Directory of RAM

Read out the n program name of the program list from the RAM. If no
program name exists, the response NAK is shown (ONLY PC).

Response: <STX><ACK>name<ETX>
Response: <STX><NAK><ETX> no name available
Information of the transmission protocol

Read out the state of the RS interface transmission protocol

Define the RS interface transmission protocol
n=0 Instruction transmission without checksum
n=1 Instruction transmission with checksum

Information operator panel

Define type of operator panel

n=0 drive without operator panel

n=1 drive with operator panel BT5

n=2 drive with operator panel TP11

Version Request

The software version of the controller is read (ONLY PC).

Response: <STX><ACK>Software Version<ETX>

14

phytron

2.9 Jump Instructions (ONLY PROG)

Instruction

N+nn
N—nn

N+Rnn
N—-Rnn
N+R[RnnN]
N—-R[RnnN]

Nnn

N*la*

NRnn
NR[RnN]

NP[name]

NP[name]Nnn
NP[name]NRnn
NP[name]NR[Rnn]

NP[name]N*la*

NE+nn
NE—nn

NE+Rnn
NE—-RnNN
NE+R[Rnn]
NE-R[RnnN]

NENnn
NE*la*

NERNN
NER[RnNN]

NEP[name]

NEP[name]Nnn

Meaning

Relative Jump

Relative jump forward (+) or backward (-). Distance: nn program
lines.

Relative jump forward (+) or backward (-). Distance: number of
program lines, defined by the content of register nn.

Absolute Jump
Absolute jump to program line number nn.

Absolute jump. Destination program line number: marked by the
label *la*.

Absolute jump. Destination program line number: defined by the
content of register nn.

Absolute jump to program name. Program starts at line number 1.

Absolute jump to program name. Program starts at line number nn.
Absolute jump to program name. The program start line number is
defined by the content of register nn.

Absolute jump to program name. The program start line is marked
by the label *la*.
Conditional Jump Relative / E = Condition Fulfilled

Relative jump forward (+) or backward (-). Distance: nn program
lines.

Relative jump forward (+) or backward (-). Distance: number of
program lines, defined by the content of register nn.

Conditional Jump Absolute / E = Condition Fulfilled
Absolute jump to program line number nn.
Absolute jump. Destination program line: marked by the label *la*.

Absolute jump. Destination program line number: defined by the
content of register nn.

Absolute jump to program name.
Program starts at line number 1.

Absolute jump to program name.
Program starts at line number nn.

15 MA 1240-A007 EN

MINILOG

Instruction

NEP[name]NRnn
NEP[name]NR[RnNN]

NEP[name]N*la*

NN+nn
NN-nn

NN+Rnn
NN—-Rnn
NN+R[RnnN]
NN-R[RnnN]

NNnn

NN*la*

NNRnNN
NNR[RnNnN]

NNP[name]

NNP[name]Nnn

NNP[name]NRnn
NNP[name]NR[RnnN]

NNP[name]N*la*

Meaning

Absolute jump to program name. The program start line number is
defined by the content of register nn.

Absolute jump to program name. The program start line is marked
by the label *la*.
Conditional Jump Relative / N = Condition Not Fulfilled

Relative jump forward (+) or backward (-). Distance: nn program
lines.

Relative jump forward (+) or backward (-). Distance: number of
program lines, defined by the content of register nn.

Conditional Jump Absolute / N = Condition Not Fulfilled
Absolute jump to program line number nn.

Absolute jump. Destination program line number: marked by the
label *la*.

Absolute jump. Destination program line number: defined by the
content of register nn.

Absolute jump to program name. Program starts at line number 1.
Absolute jump to program name. Program starts at line number nn.

Absolute jump to program name. The program start line number is
defined by the content of register nn.

Absolute jump to program name. The program start line is marked
by the label *la*.

2.10 Repeating of Program Lines

Instruction
NWnn

NWRnNN
NWR[RnNN]

MA 1240-A007 EN

Meaning
The program line is nn times repeated.

The program line is repeated as often as defined by the content of
register nn.

Response: <STX><ACK><ETX> (ONLY PC)

16

phytron

2.11 Passwort

Instruction

PA

[

PAname
PSname

PWSp

PWR

Meaning

The controller is activated, if there is no password.
Then it is not possible to lock the controller.

The password protected controller is activated.
This comand allocates the controller a password .
It has maximum 8 alphanumeric signs.

Activation Status for Programs, Parameters and Registers
Set activation status

Programs, parameters and registers can be activated or locked by a
password protected controller.
p — Activation status for programs, parameters and registers

p =0 all activated

p =1 Program R/W locked

p =2 Parameter R/W locked

p =4 Register R/W locked

p is between 0 and 7

Example: PWS5
Program and register locked (1+4=5)

Read activation status

The answer are two digits.
<ACK> sp
s O Activation status of the controller
s =0 Controller locked
s =1 Controller activated
p — Activation status for programs, parameters and registers

see above
Example: PWR
<ACK> 15

s = 1 — Controller activated
p =5 — Program and register locked (1+4=5)

2.12 Ending or Interruption of a Program Call (ONLY PROG)

Instruction
PE

Meaning

The actual program is ended and the system waits for another
changing of the REMOTE/LOCAL switch.

If the program was started via computer, the system goes back to
the COMPUTER MODE.

17 MA 1240-A007 EN

MINILOG

2.13 Program and Data Management (ONLY PC)

Instruction

QDP* *
QDR

QPname NnnR

QPname NnnA

QPE

QPname Shyte

MA 1240-A007 EN

Meaning

Delete Programs and Data
All programs in the RAM are deleted

All registers in the RAM are set to zero.

Read Program Line

The program line nn of the program name is read.

Program Start by line

The program name is started from line nn.

Program Stop

If the QPE Instruction is sent by the computer, it causes a jump
back to the initial program level from which the program has been
started.

Program Transmission with Read Out

The program name is to be transmitted block wise. During the
transmission, the whole control sequence must be observed. The
name must have 8 characters. The line number is not transmitted.

name — maximal 8 characters,
byte — number of bytes to be transmitted

1. Computer:

<STX>controller address QPname Sbyte<ETX>
The program transmission sequence is started.

2. Controller response:

STX><ACK>O<ETX>
if the program does not exist in the controller, and the controller's
RAM capacity is sufficient.

<STX><ACK>E<ETX>
If the program exists in the controller and must be overwritten.

How to overwrite:

1) Backup of all programs of the MCC on the PC.

2) Delete all programs in the Flash RAM of the MCC.

3) Rewrite the programs (including revised prog.) to the MCC.

18

phytron

Instruction

QPname R

Meaning
3. Program transmission:
o Start:

<STX>controller address block 1<ETX>
Block 1 is 256 byte long and starts with program name <ETB> .The
program name must have 8 characters!

e Further blocks (block 1+x) always must have 256 bytes and
are embedded in <STX>controller address block 1+x<ETX

e Last block:

0x04 (EOT) must be the last character. If the last block is
shorter than 256 bytes, the rest of the block must be filled with
EOT.
Example:
<STX>controller address block end <EOT><EOT>...
<EOT><EOT><ETX>

Controller response after each block:

<STX><ACK><ETX>

Read Program with Request

The program name is to be read from the controller unit. The name
must have 8 characters. The program is to be read by the line.

Request and send
1. Computer:

<STX>controller address QPname R<ETX>
The program name is to be read.
2. Controller response:

<STX><ACK>OInr<ETX>
If the program is available, the controller unit reports the
character O and the number of program lines Inr .

3. Computer:

<STX>controller address J<ETX>
The computer receives the first line of the controller.

4. Contoller response:

<STX>data program line x<ETX>
The data are read line by line by indicating the line number.

Number 3. and 4. are repeated as long as all lines are received.

The transmission is finished by appending 0x04(EOT) to the last
line.

Example for last line:
<STX>Data last program line ...<EOT><EXT>
19 MA 1240-A007 EN

MINILOG

2.14 Registers

The MCC-2 controllers contain 1000 memory locations used to store variables, called
Registers within MiniLog programs.

The registers are numbered R1 to R1000.

In each register numbers with up to ten digits can be entered. Decimal values are also
programmable. Before and after the decimal point up to seven digits may be entered.
The total number of digits must not exceed 8.

If possible, the registers should be programmed in the first program lines.

Write value into a register: RnnnnSzz
Read value of a register: RnnnnR

Explanations: R instruction code: register
nnnn register number
S Write (Schreiben)
zz number (maximum 10 digits)

Within the program registers can be used for indirect input of positions. Combined with
arithmetic calculations registers can be used as counters during program run.

For all logic combinations or arithmetic calculations with registers please notice:
The computed value will always be written into the first register named in the
instruction.

Example: Add the values of two registers
R18+R2 Value of register 2 is added to value of register 18.
The result will be stored in register 18.

Compare register values

As the result of a comparison, a condition byte will be set by the program:

E = condition fulfilled,

N = condition not fulfilled.

The status of the condition byte can be used for a conditional jump, subroutine instructions
or other operations.

Example: Comparison of a register value with a number and

conditional jump

R999=1 NE11 N77 If register 999 contains the value 1, jump to line 11,

if not, jump to line 77.

MA 1240-A007 EN 20

phytron

2.15 Register Instructions

Instruction

Rnn.z

RnnBANnn—mm
R[RNN]BAnn—-mm

RnnBEnn—mm
R[Rnn]BEnn—mm

RnnBSvalue
R[Rnn]BSvalue

RnnBLmM
R[Rnn]BLmM

Meaning

Register Value Integer
The digits after the decimal point of the register nn are deleted
without truncation of the value.

z=0-6 digits after the decimal point

Set Outputs with Register Value

The content of the register nn is set as a binary value to the controller
outputs nn to mm.

Load Register with Input Status

The status of the inputs nn to mm is written as a binary value into the
register nn.

Example: R1BE1-8 — Input status: 1010 0101 Result: 165

Load Register with Hexadecimal Value
The register nn is set to the value. The data are fed in hexadecimal
Example: R1BS1FA

The register 1 is set to the hexadecimal value 1FA. After the
instruction was carried out, the content of the register 1 is 506
decimal.

Shift Register Bit by Bit

The content of the register nn is shifted the number of m digits to the
left (MSB «). The right side of the register is filled in with zero.
m = 1 to 27 — maximal value of the register content.

Example: R1S168 R1BL2

The register 1 is set to the decimal value 168, corresponding to the
binary value 10101000. After the register content was shifted the
number of 2 digits to the left, the binary value is 1010100000 which
corresponds to the decimal value 672.

Response: <STX><ACK><ETX> (ONLY PC)

21 MA 1240-A007 EN

MINILOG

Instruction

RnnBRmM
R[Rnn]BRmM

RnnBTm
R[RNN]BTm

RnnB/value
R[Rnn]B”value

RnnBARmm
R[RNN]B*"Rmm
RnnBMR[RmmM]
R[RNN]BM"R[RmMm]

MA 1240-A007 EN

Meaning

The content of the register nn is shifted the number of m digits to the
right (— LSB). The left side of the register is filled in with zero.

m =1 to 27 — maximal value of the register content.

Example: R1S168 R1BR2

The register 1 is set to the decimal value 168, corresponding to the
binary value 10101000. After the register content was shifted
(R1BLZ2) the number of 2 digits to the right, the binary value is
101010 which corresponds to the decimal value 42.

Register Bit Check

The content of the register nn is regarded as a binary value. The digit
in the position m of the binary value is checked. If the corresponding
bit has been set, the condition byte is set. Otherwise the condition
byte is reset.

m = 0 to 27 — maximal value of the register content.
Example: R1S168 R1BT4

The register 1 is set to the decimal value 168, corresponding to the
binary value 10101000. The Instruction R1BT4 checks the 4™ digit
from the right side (m « LSB) of the binary value. The condition byte
is set, because the 4™ digit has the value 1.

Response: <STX><ACK> E <ETX> or
<STX><ACK> N <ETX> (ONLY PC)

Logical Register Operations
Logic AND

A logical AND operation is carried out with the content of the register
nn and the hexadecimal value. The condition byte is set if the result
is zero. Otherwise it is reset.

Example: R1BS2A8 R1BM1A0

The register 1 is set to the hexadecimal value 2A8 (= 680 decimal).
After the instruction R1B”1AO0 has been carried out, the content of
the register 1 is 160 decimal.

Decimal Hex Binary

680 2A8 1010101000

416 1A0 0110100000
Result: 160 0AO 0010100000

A logical AND operation is carried out with the content of the register
nn and the content of register mm. The condition byte is set if the
result is zero. Otherwise it is reset.

22

phytron

Instruction Meaning

Logic OR
RnnBvvalue A logical OR operation is carried out with the content of the register
R[Rnn]Bvvalue nn and the hexadecimal value. The condition byte is set if the result

is zero. Otherwise it is reset.
Example: R1BS2A8 R1BV1AO

The register 1 is set to the hexadecimal value 2A8 (= 680 decimal).
After the instruction R1Bv1AO0 has been carried out, the content of
the register 1 is 936 decimal.

Decimal Hex Binary
680 2A8 1010101000
416 1A0 0110100000
Result: 936 3A8 1110101000
RnnBvRmm A logical OR operation is carried out with the content of the register
R[Rnn]BvRmMm nn and the content of register mm. The condition byte is set if the
RnnBVR[RmMmM] result is zero. Otherwise it is reset.
R[RnNn]BVR[RmMmM]
Response: <STX><ACK><ETX> (ONLY PC)
Logical Exclusive OR
RnnBXvalue A logical XOR operation is carried out with the content of the register
R[Rnn]Bxvalue nn and the hexadecimal value. The condition byte is set if the result
is zero. Otherwise it is reset.
Example: R1BS2A8 R1BX1A0
The register 1 is set to the hexadecimal value 2A8 (= 680 decimal).
After the instruction R1BX1AO0 has been carried out, the content of
the register 1 is 776 decimal.
Decimal Hex Binary
680 2A8 1010101000
416 1A0 0110100000
Result: 776 308 1100001000
RnnBXRmm A logical XOR operation is carried out with the content of the register
R[Rnn]BXRmm nn and the content of register mm. The condition byte is set if the
RnnBXR[Rmm] result is zero. Otherwise it is reset
R[RNN]BXR[RmMm]
Compare Register Content with Number Values
Rnn=value The content of register nn is compared with a number (value). The
R[Rnn]=value condition byte is set if equality has been detected. Otherwise it is
reset.
Rnn#value The content of register nn is compared with a number (value). The
R[Rnn]#value condition byte is set if inequality has been detected. Otherwise it is
reset.

23 MA 1240-A007 EN

MINILOG

Instruction

Rnn>value
R[Rnn]>value

Rnn<value
R[Rnn]<value

Rnn=Rmm
R[RNN]=Rmm
Rnn=R[Rmm]
R[RnNnN]=R[Rmm]
Rnn#Rmm
R[RNN]#Rmm
Rnn#R[Rmm]
R[RNN]#R[Rmm]
Rnn>Rmm
R[RNN]>Rmm
Rnn>R[Rmm]
R[Rnn]>R[Rmm]
Rnn<Rmm
R[RNn]<Rmm
Rnn<R[Rmm]
R[Rnn]<R[Rmm]

Rnn+value
R[Rnn]+value
Rnn+Rmm
Rnn+R[Rmm]
R[Rnn]+Rmm
R[RNN]+R[RmMm]

Rnn-value
R[Rnn]—value
Rnn—Rmm
Rnn—R[Rmm]
R[RnNN]-Rmm
R[Rnn]-R[Rmm]

Rnn*value
R[Rnn]*value
MA 1240-A007 EN

Meaning

The content of register nn is compared with a number (value). The
condition byte is set if the register value is higher. Otherwise it is
reset.

The content of register nn is compared with a number (value). The
condition byte is set if the register value is lower. Otherwise it is
reset.

Compare Register Content

The content of register nn is compared with the content of register
mm. The condition byte is set if equality has been detected.
Otherwise it is reset.

The content of register nn is compared with the content of register
mm. The condition byte is set if inequality has been detected.
Otherwise it is reset.

The content of register nn is compared with the content of register
mm. The condition byte is set if the value of register nn is higher.
Otherwise it is reset.

The content of register nn is compared with the content of register
mm. The condition byte is set if the value of register nn is lower.
Otherwise it is reset.

Response for all relations:
<STX><ACK> E <ETX> or
<STX><ACK> N <ETX> (ONLY PC)

Arithmetical Register Operations
Addition

The value is added to the content of register nn.

The content of register mm is added to the content of register nn.

Subtraction

The value is subtracted from the content of the register nn.

The content of register mm is subtracted from the content of the
register nn.

Multiplication

The content of register nn is multiplied by the value.

24

phytron

Instruction

Rnn*Rmm
R[RNN]*Rmm
Rnn*R[Rmm]

R[RNN]*R[Rmm]

Rnn:value
R[Rnn]:value
Rnn/value
R[Rnn]/value
Rnn:Rmm
Rnn:R[Rmm]
R[RNNn]:Rmm

R[RnNn]:R[RmMmM]

Rnn/Rmm
Rnn/R[Rmm]
R[Rnn]/Rmm

R[RNn]/R[Rmm]

RnnSIN
RnnCOS
RnnTAN

RnnQW

RnNnRAND

RnnR
R[RNN]R

RnnSvalue
R[Rnn]Svalue

RnNNnSRmMm
R[RNN]SRmMm

Meaning

The content of the register nn is multiplied by the content of register
mm.

Division

The content of register nn is divided by the value.

The content of register nn is divided by the content of register mm.

The content of register nn is divided by the value.

The content of register nn is divided by the content of register mm.

Trigonometric Functions

Sinus, Cosinus or Tangant is evaluated from the value of the register
nn and the result is written back to the register nn.

Square Root

The square root is evaluated from the value of the register nn and

written back to the register nn.

Random Number

The register nn is set with the random number in the range 0 to

4294967296 (2%).

Read Register

The content of register nn is read (ONLY PROG).

Response: <STX><ACK>value<ETX>

Response for all arithmetical operations:
<STX><ACK><ETX> (ONLY PC)

Write Register

with Decimal Values:

Register nn is set to the value.

with Register Values:

Register nn is set to the value of register mm.

25 MA 1240-A007 EN

MINILOG

Instruction

RnNnSR[RmMm]
R[RNN]SR[mm]

RnnSXPmm
R[RNN]SXPmm

RnnSN
R[RNN]SN

RnnSTT

RnnSZ

R[RNN]SZ

RnNNnSEmm—xx.k
R[RNN]SEmm-—xx.k

MA 1240-A007 EN

Meaning

with Parameter Values

Register nn is set to the parameter mm of axis X.

with line number emergency stop

The register nn is set with the line number, in which an emergency
stop started.
Example : Lnr 001 FN10

Lnr 002 X+1000

Lnr 003 X-1000 H N2

Lnr 010 R1SN

In this example an emergency stop program is defined in line 10. The
x-axis drives 1000 steps in + and — direction. In case of an
emergency stop during an axis drive, the program continues in line
10 and the axis is stopped. With the instruction R1SN the register 1
is set with the line number, in which the emergency stop started.
Then, it is possible to interpret at which positioning the emergency
stop started.

with the Timer Ticker Value
The register nn is written with the timer ticker value.

with the Program Line Number

The program line number at which this instruction is called is written
into the register nn.

The program line number at which this instruction is called is written
into the register which is adressed by the register nn.

Example : Lnr 041 R1S10
Lnr 042 R[R1]SZ

In this example the register 1 is written with the value 10. The
register 10 is written with the instruction R[R1]SZ by the actual line
number. The register content 10 is now 42. This instruction can be
used for automatic start functions.

Write Register via Inputs

A BCD value is written via the inputs mm to xx into the register nn.
k = number of digits after the decimal point.

Example: R1SE1-8.1
The inputs 1 to 8 have e.g. the status: 1001 0011. The result is 9.3.

26

phytron

Instruction

RnnST

RnnST.z

RnNnSTy

RnnSTy.z

RnNNSTy;m

RnNnSTy;m.z

Meaning
Change Register with Terminal

Register nn is displayed in line 4 from position 10. New data are
input at the cursor position. The register nn is rewritten by pressing
the ENTER key of the terminal.

Example : R41ST
In this example the register 41 is displayed in the 4th line of the
terminal display from the 10th position and is ready for editing.

Response: <STX><ACK><ETX> if terminal available
<STX><NAK><ETX> if no terminal available
(ONLY PC)

Register nn is displayed in line 4 with z digits after the decimal point
(z=0 to 6). New data are input at the cursor position. The register nn
Is rewritten by pressing the ENTER key of the terminal.

Example : R2ST.6

The register 2 is displayed with 6 digits after the decimal point on the
terminal and is rewritten.

Register nnin line y is displayed (y=1 to 4) and is rewritten after new
input with ENTER key.

Example : R2ST3
The register 2 is displayed in the 3rd line on the terminal from
position 1 and is rewritten.

Register nnin line y (y=1 to 4) is displayed with z digits after the
decimal point (z=0 to 6) and is rewritten after new input with ENTER
key.

Example : R2ST3.4
The register 2 is displayed in the 3rd line with 4 digits after the
decimal point from position 1 on the terminal and is rewritten.

Register nnin line y (y=1 to 4) is displayed from position m (m=1 to
20) and is rewritten after new input with ENTER key.

Example : R1ST3;6
The register 1 is displayed in the 3rd line from position 6 and is newly
written.

Register nnin line y (y=1 to 4) is displayed with z digits after the
decimal point (z=0 to 6) from position m (m=1 to 20) and is rewritten
after new input with ENTER key.

Example : R2ST2;2.6

The register 2 is displayed in the 2nd line from position 2 with 6 digits
after the decimal point from postion 1 on the terminal and is
rewritten.

27 MA 1240-A007 EN

MINILOG

Instruction

RnnSADy
R[Rnn]SADy

RnnWy

RnnWy.z

RnnWy;m

RnnWy;m.z

MA 1240-A007 EN

Meaning

with A/D converter values

Register nn is written by the A/D converter value.
y=1to 2: A/D converter channel

Display Register with Terminal

The value of register nn is displayed in line y from position 1
(y=1to 4).

Example : R2W2

Register 2 is displayed in line 2 from position 1.

The value of register nn is displayed in line y from position 1
(y=1 to 4) with z digits after the decimal point (z=0 to 6).

Example : R1W4.6
The register 1 is displayed in the 4th line from the 1st position with 6
digits after the decimal point.

The value of register nn is displayed in line y from position m
(y=1to 4, m=1 to 20).

Example : R2WS3;5
The register 2 is displayed in the 3rd line from the 5th position.

The value of register nn is displayed in line y from position m
(y=1to 4, m=1to 20, z=0 to 6) with z digits after the decimal point.

Example : R7W2;5;3
The register 7 is displayed in the 2nd line from the 5th position with 3
digits after the decimal point.

Answer: <STX><ACK><ETX> (ONLY PC)

28

phytron

2.16 System Status (ONLY PC)

Instruction

Meaning

SB

SE

System Status General
Axes check and request for the number of axes.
Response:<STX><ACK>n 10 <ETX>

n = number of axes

System Status Binary
Read system status in binary format (dg = 0 or 1).

Response: <STX><ACK>dgg dg1<ETX>

ds 1 =1 — Program Run

ds 2 = 1 — Software Remote

ds 3 =1 — Emergency limit switch of an axis

ds 4 = 1 — Power stage failure of an axis

ds 5 =1 — Error programming (reset after status request)
ds 6 =1 — Terminal is activated

ds 7 =1 —» SRQ has been set

ds 8 =1 — Computer call

System Status Extended

Read system status in hexadecimal code. Two bytes (4 hexadecimal
digits dy) are available per axis: 1. + 2. byte for the x-axis, 3. + 4. byte for
the y-axis.

Response: <STX><ACK>dpxduxduxduxdpyd pyd pyd py<ETX>

Bit0 =1 — Power stage error

Bit1 =1 — Power stage under voltage

Bit 2 =1 — Power stage overtemperature

Bit 3 =1 — Power stage is actived

Bit4 = 1 — |Initiator — is activated (emergency stop)

Bit 5 =1 — Initiator + is activated

Bit 6 = 1 — Step failure (only with option SFI = Step Failure Indication)
Bit 7 =1 — Encoder error

Bit 8 =1 — Motor stands still

Bit 9 = 1 —» Reference point is driven and OK (is reset at stop by initiator)

(Bit 10 to Bit 15 not reserved)

If Bit O to Bit 2 are set at the same time, no power stage is connected.
Otherwise, only one error is possible at the time.

29 MA 1240-A007 EN

MINILOG

Instruction Meaning

SH System Status Axes

Axis test with status axes output.
Response:<STX><ACK> E <ETX>, if all axes are stopped.
<STX><ACK> N <ETX>, if any axis is running.

System Status Decimal
ST Read system status as decimal number.

Response: <STX><ACK>value <ETX>
value = number between 0 and 255

0 = End of program in the LOCAL MODE

1 = Program run

2 = Software Remote

4 = Emergency limit switch of an axis

8 = Power stage failure of an axis

16 = Error programming (reset after status request)
32 =Terminal or Enable is activated

64 = SRQ has been set
128 = Computer Mode
Initiators
Sul Read status of initiators (limit switches).
Response:<STX><ACK>|=n <ETX>

n =0 — Axis is free, no initiator has reacted

n = + — Initiator + direction has reacted

n = — — Initiator — direction has reacted

n = 2 — Both initiators have reacted (that means: wrong polarity
of the initiators, broken wire or no 24 V supply voltage)

Synchronous Start
S1 Prepare the synchronous start of the axes

SO Execute the synchronous start of the axes.

MA 1240-A007 EN 30

phytron

2.17 Store Data into Flash EPROM

Instruction

Meaning

SA

Store programs and axis parameters (ONLY PC)

Axis parameters are stored into the EPROM.

2.18 Time Loops

Instruction

Meaning

Tvalue
TRnNN
TR[RnNnN]

TTSvalue
TTSRNN
TTSR[RNN]

TT=0

TT>value
TT>Rnn
TT>R[RnN]
TT<value
TT<RnNn
TT<R[RnNN]

The value for time loops (value, content of register nn or register [Rnn)) is
preset in ms.
The program waits here until the preset time has run out.

Response: <STX><ACK><ETX> (ONLY PC)
The timer is loaded with a time (ms) value (value, content of register nn or

register [Rnn]).
The timer counts down to zero. The program is not interrupted.

Response: <STX><ACK><ETX> (ONLY PC)

The timer is compared with zero. If the timer is equal to zero the condition
byte is set. Otherwise it is reset.
Timer = 0 : the preset time is passed.

The timer is compared with the preset value (value, content of register nn
or register [Rnn]). If the timer value is higher/lower than the preset value
(condition fulfilled) the condition byte is set.

Otherwise it is reset.

Response: <STX><ACK>E<ETX> or
<STX><ACK>N<ETX> (ONLY PC)

31 MA 1240-A007 EN

MINILOG

2.19 Subroutines (ONLY PROG)

Instruction

UA

UE

unn

URnn
UR[RNN]

U*la*

UP[name]

UP[name]Nnn

UP[name]NRnn
UP[name]NR[RnNN]

UP[name]N*la*

Uenn

UERNN
UE[RNN]

UE*la*
UEP[name]
UEP[name]Nnn

MA 1240-A007 EN

Meaning

Break Off Subroutine

Break off all subroutines and set stack.

The program can be continued with a jump instruction.

End of Subroutine

The subroutine is finished and the program is continued at the
program line where this subroutine has been called.

Call of Subroutine

The subroutine with the start line nn is called.

The subroutine can be ended by means of the instruction UE.
The register nn or [Rnn] contains the start line of the called
subroutine. The subroutine is ended with the instruction UE.

The subroutine starts at that line which is indicated by the label *la*.
The subroutine is ended by the instruction UE.

The subroutine name (start line number 1) is called. The subroutine
is ended by the instruction UE.

The subroutine name (start line number nn) is called. The
subroutine is ended by the instruction UE.

The subroutine name starts at that program line which is stored in
the register nn or [Rnn]. The subroutine is ended by the instruction
UE.

The subroutine name starts at that line which is indicated by the
label *la*. The subroutine is ended by the instruction UE.

Conditional Subroutine Call

All instruction variants described above are available for the
conditional subroutine call. The instructon call is only completed by
the letter ,E“ for condition fulfilled or ,N“ for condition not fulfilled.

"E" = Condition fulfilled

see Unn, page 32

see U*la*, page 32

see UP[name], page 32

32

phytron

Instruction Meaning
UEP[name]NRnn
UEP[name]NR[RnNN

]
UEP[name]N*la* see UP[name]N*la*, page 32

"N" = Condition not fulfilled
unnn see Unn, page 32

UNRNN
UNR[RNN]

UN*la* see U*la*, page 32
UNP[name] see UP[name], page 32
UNP[name]Nnn

UNP[name]NRnn
UNP[name]NR[Rnn

]
UNP[name]N*la* see UP[name]N*la*, page 32

2.20 Terminal Instructions (also by PC in case of terminal connection)

Instruction Meaning
<>Wy Erase texton liney (y=1to 4)
<text>Wy

Display the text in line y from position 1 (y=1 to 4)

<text>Wy;m Display the text in line y from position m (y=1 to 4; M=1 to 20)

Response: <STX><ACK><ETX>

33 MA 1240-A007 EN

MINILOG

2.21 Axes Instructions

Instruction

XC
YC

X>value
X>Rnn
X>R[Rnn]

MA 1240-A007 EN

Meaning

Reset x-axis
Reset y-axis

Response: <STX><ACK><ETX> (ONLY PC)

Axis Status Request

AXis request on power stage error.

Check (=) if a power stage error has occurred or check (#) if the power
stage is operating normally.

The error message “Failure” is requested.

AXxis request on stillstand.

Check (=) if the axis is in standstill or check (#) if the axis is in motion.
The condition byte is set when the condition is fulfilled. Otherwise it is
reset.

AXxis request on initiator status.
The condition byte is set when the axis has come to a standstill at the
initiator or the initiator is not connected. Otherwise it is reset.

AXis request on power stage error.
Check power stage (=), if a Step failure has occurred or has not (#)
occurred.

The condition byte is set, when the condition is fulfilled. Otherwise it is
reset.

This instruction applies only to control units with optional Step Failure
Indication (SFI) board.

AXis request on emergency stop.
Check (=) if the axis has come to a standstill (or not (#)) at an
emergency switch.

The condition byte is set when the condition is fulfilled. Otherwise it is
reset.

Response: <STX><ACK>E<ETX> or
<STX><ACK>N<ETX> (ONLY PC)

Wait until Set Point is reached

The axis X is positioned and the program waits until the value of the
counter XP21 is higher than the preset value (value, content of
register nn or register [Rnn]). If the XP21 value is higher or the axis
has come to a standstill the program is continued.

Example: Inr 005 XP21S0 XP14S2000 XL+
Inr 006 X>5000 XP14S1000
Inr 007 X>10000 XS XP14S2000

34

phytron

Instruction

X<value
X<Rnn
X<R[Rnn]

XMA

XMD

XPmmR

XPmmSvalue
XPmmSRNn
XPmmSR[RNN]

X0+

XO0-I

Meaning

The axis is to be moved 10000 steps with 2000 Hz. After 5000 steps,
the frequency is lowered to 1000 Hz and is set to 2000 Hz again after
the standstill of the axis. At the instruction X>5000 the program is
stopped and will be continued after the position 5000 is reached or the
axis has been stopped by an emergency stop.

The axis x is positioned and the program waits until the value of the
counter xP21 is lower than the preset value (value, content of register
nn or register [Rnn)). If the xP21 value is lower or the axis has come
to a standstill the program is continued.

Response: <STX><ACK><ETX> (ONLY PC), if the axis

has come to a standstill or the position condition is
fulfilled.

Otherwise the program waits.

Switching Power Stages
Activate

The power stage of axis X is activated.

Deactivate

The power stage of axis X is deactivated.

AXxis parameter
The parameter mm of axis x is read out. (Only PROG)

Response : <STX><ACK>value<ETX>
mm = Parameter ID (ONLY PROG)

The parameter mm of axis x is loaded with the preset value (value, the
content of register nn or register [Rnn]).
mm = Parameter ID

Initialisation/Reference Search Run

To initialize an axis, a reference search run has to be carried out. The
initiators, also called limit switches, serve as reference point. The axis
moves to an initiator. When the initiator signal is identified, the motor
stops and moves as long in the opposite direction until there is no
more initiator signal. In case of initiator offset setting the offset
distance is run and the axis is stopped. This point is called M@P
(mechanical zero point) or reference point.

The axis moves to the initiator of the — direction.
The axis moves to the initiator of the + direction.

The axis moves in — direction and stops with the zero pulse of the
incremental encoder. Only incremental, no SSI Encoder!

35 MA 1240-A007 EN

MINILOG

Instruction
X0+l

X0-"1

X0 +7|

XLr

Xrvalue
XrRnn
XrR[Rnn]

XrvaluevEnnz
XrRnnvEnnz
XrR[Rnn]JvEnnz

XrvaluevvEnnz
XrRnnvvEnnz
XrR[Rnn]vvENNz

MA 1240-A007 EN

Meaning

The axis moves in + direction and stops with the zero pulse of the
incremental encoder. Only incremental, no SSI Encoder!

Response: <STX><ACK><ETX> (ONLY PC)

The axis moves to the initiator of the — direction. After the offset
distance the axis moves again until the zero impulse of the
Incremental encoder stops the axis. Only incremental, no SSI
Encoder!

The axis moves to the initiator of the + direction. After the offset
distance the axis moves again until the zero impulse of the
Incremental encoder stops the axis. Only incremental, no SSI
Encoder!

Free Running

The axis is started and runs as long as it is stopped by the instruction
XS or by a limit switch.
r = + or — running direction

Relative Positioning

The axis runs the distance relatively which is preset by value, the
content of register Rnn or register [Rnn].
r = + or — running direction

with stop instruction via input

The axis runs relatively with its creep speed the distance which is
preset by value, the content of Rnn or register [Rnn]. The axis stops
prematurely if the input nn gets the status z or a limit switch stops the
positioning.

r = + or — running direction

Z =S — input set

z = R — input reset

The axis runs relatively with its high speed the distance which is
preset by value, the content of Rnn or register [Rnn]. The axis stops
prematurely if the input nn gets the status z or a limit switch stops the
positioning.

r = + or — running direction

z=S — Iinput set

z=R — input reset

36

phytron

Instruction Meaning

Absolute Positioning Related to the M@P

XArvalue The axis runs, in relation to the mechanical zero point M@P (XP20) to
XArRnn the absolute position, which is preset by value, the content of Rnn or
XArR[RNN] register [Rnn].

r = + or — running direction

with stop instruction via input

XArvaluevvEnnz The axis runs with high speed, in relation to the mechanical zero point

XArRnnvvEnnz M@P to the absolute position, which is preset by value, the content of

XArR[RNN]vWENNZ Rnn or register [Rnn]. The axis stops prematurely if the input nn gets
the status z or a limit switch stops axis run.

r =+ or — running direction
z=S — Iinputset
z=R — inputreset

Absolute Positioning Related to the ELOP

Xervalue The axis runs, in relation to the electronical zero point (EL@P) to the
XErRnn absolute position, which is preset by value, the content of Rnn or
XErR[RnN] register [Rnn].

r = + or— running direction
z =S — input set
z = R — input reset

With stop instruction via input

XErvaluevvEnnz The axis runs with high speed, in relation to the electroncal zero point

XErRnnvvEnnz (EL@P) to the absolute position, which is preset by value, the content

XErR[RnNn]vVENNZ of Rnn or register [Rnn]. The axis stops prematurely if the input nn
gets the status z or a limit switch stops axis run.

r = + or — running direction
Z =S — input set
z = R — input reset

Axis Stop

XS All running instructions are cut off. The axis stops with the preset
ramp.

XSN The axis stopps with the preset emergency stop ramp

(parameter P7).

37 MA 1240-A007 EN

MINILOG

2.22 Function Keys Read Out on Terminal BT24 (also by PC)

Instruction

Meaning

#vFn

#vnmx

MA 1240-A007 EN

Conditional Keyboard Read Out

If the function key n is being depressed, the conditional byte is set.
Otherwise it is reset.

n = function key F1 to F6

If the key n or m or x is being depressed, the conditional byte is set.
Otherwise it is reset.

n,m,x =0to 9 (key 0to 9)

n, m, x =L (key CURSOR LEFT)
n, m, X =R (key CURSOR RIGHT)
n, m, x =U (key CURSOR UP)

n, m, x =D (key CURSOR DOWN)
n, m, x =H (key CURSOR HOME)
n, m, x =B (key SCROLL)

n, m, x =C (key CLEAR)

n, m, x = E (key ENTER)

n, m, x =P (key PRINT)

n,m,x =? (key ?)

n,m, x =+ (key +)

n, m,x =—(key-)

n,m,x =.(key.)

Example: ZNR 005 #vH1? NN-0

The BT24 keyboard is scanned as long as the key H, 1 or ? is beeing
depressed. The conditonal byte is reset, if the keys HOME,1 or ? are not
depressed. By the instruction NN-O the programm jumps to the line hold
of line 5.

Important: The key ENTER is not defined for a read out.

Response: <STX><ACK> E <ETX> or
<STX><ACK> N <ETX> (ONLY PC)

38

phytron

3 List of Minilog Instructions

VN oo 38
FVIIMIX i 38
SSWY 33
<EEXTSWY oo 33
ADNR Lot 10
AGNR .t 9
AGNSZZZZZZ77ueeoveeiiiiiiiiiiiiiiiiee s 9
ANNNZ o 9
ANNNZMMMZXXXZ <o 9
ARNNNMIMIMXXX v 9
CRu s 10
T 10
DL 10
D2 e 10
D3 s 10
EMNNZMMZXXZ .o 11
EASNNNNNNNN ... 12
EGNR ... 12
ENNZ..., 11
ENNZMMZ..cooiiiiiiii e 12
ERNNMMEXX ceviiieeieee e 12
EVNNZMMZXX ..ot 11
e e = S 13
FNZNC 13
FPINAME] ..eiiiiiiiieiiiiee e 13
H e 13
AR 13
IBR . 13
IBSNAME....ciiiiiiiiiee e 13
ICNR . 13
ICNSbAaUd........ccoiiiiiiii 13
] PSP PO PRPRPRPTPRPPPR 14
IR ettt 14
[P et 14
[T R e 14
TSI e 14
T TSN e 14
IVR e 14
<EEXTSWY oo 33

39

NFIA¥ e 15
NFNN 15
NHR[RNN].ccoieeeeee e 15
NFRNN. oo 15
NEXA* ..o 15
NEHNN ..o 15
NEFR[RNN] «.ovveeeeeeeeeeeeeeeeeee e 15
NE+RNN oo 15
NENN oo, 15
NE-NN ..ot 15
NEP[NAME] ...evviiieiiee et e e 15
NEP[name]N*a*.........cccccoviieiiiiiiieniie e 16
NEP[N@amMEINNNcooiiiiiiiiiiiii e 15
NEP[Name]NR[RNN] ..o, 16
NEP[Name]NRNN ... 16
NER[RNN] oot 15
NE=R[RNN] «.eveeeeeeeeeeeeeeeeeeee e 15
NERNN 15
NE-RNN ..o 15
NINFIE™ .o 16
NNFNN e 16
NN+R[RNN] oo 16
NNFRNN e 16
NN e 15
N=NN 15
NN e 16
NN=N .o 16
NNPINAME] ...ooiiiiiieiiiie e 16
NNP[nameN*la*.........cccoiieiiiiiiiiiee e 16
NNP[NameJNNN ... 16
NNP[name]NR[RNN].......ccccccoiiiiiiiiiee e 16
NNP[Name]NRNN ... 16
NNRIRNN] oo 16
NN=R[RNN] ... 16
NN=RNN ..o 16
NNRNN e 16
NPNAME] ... et 15
NP[Name]N*a* ... 15
NPNAMEINNN ..o 15

MA 1240-A007 EN

MINILOG

NP[Name]NR[RNN]oooiiiiiiieee e 15
NP[NameINRNNoooeeiiiieeee e 15
NR[RNN] coeeiiieeecee e 15
N=R[RNN] ..ottt 15
NRNN oo 15
N=RNN ..o 15
NWNN o 16
NWRIRNN] ..ot 16
NWRNN Lo 16
PANGME ... 17
P L ettt 17
PE e 17
PSName ..o 17
PWR ..ottt eeeeeeeeeeeeees 17
PWSP oo 17
QD P, * 18
QDR oot 18
QPE oottt 18
QPname NNNnA..........cc i, 18
QPname NNNR..........c.oo i, 18
QPname R ..., 19
QPName SHYte........cccueeiiiiiiiiiiiiee e 18
RIRNN] :R[RMM] .evvviiieiiiiiieieeee e 25
RIRNNJH#R[RMM] ..eevvveeeiiiiieeeeece e 24
RIRNN]IRMM . 25
RIRNNJHERMM ...t 24
RIRNN]IVAIUE ..o 25
RIRNNJ#AVAIUE........eeiiii 23
RIRNNI*RIRMM] .o 25
RIRNNJ*RMM .o 25
RIRNN]*VAIUEoeeiiiiiiiiiiiiiece e 24
RIRNNJ/R[RMM] ..eeeiiiieiiiiiiiiie e 25
RIRNNJ/RMM ...t 25
RIRNNJ/VAIUE......oveeeeeeeiieee e 25
RIRNN]+R[RMM]..ceviiieiiiiiiiiieeee e 24
RIRNNJFRMM ...t 24
RIRNN]HVAIUE.....eeiiiii e 24
RIRNN]<KRIRMM]..eeiiiiiiiiiiiiiiiiee e 24
RIRNNJSRMM ...ttt 24
RIRNN]<VAIUE......eeiiiiiiiiiiiee e 24
RIRNN]=R[RMM]..ceviiiiiiiiiiiiiee e 24
RIRNN]ZRMMciiiiiiiiec e 24

MA 1240-A007 EN

40

RIRNN]=VAIUE ..o 23
RIRNN]>RIRMM] ..oooiiiiiiiieee e 24
RIRNN]ZRMM ..o 24
RIRNN]SVAIUEceieiiiiiiiiiiiieee e 24
R[RNNIBAR[RMMY] ..o 22
RIRNNIBARMM i 22
R[RNNIBAVAIUE ...ooeeeeiciieieeee e 22
RIRNN]BANN—MM ...ttt 21
R[RNN]BENN—MM ... 21
RIRNNIBLM ...oviiiiiiiiiiieieece e 21
RIRNNIBRM ..evviiiiiciiiieie e 22
R[RNNIBSvalue........ccccoveeeeeeeieiiieeee e 21
RIRNNIBTM ...tiiiiiieeiieiiieie e 22
RIRNNIBVRIRMM] ...eviiiiiiiiiiiiiieee e 23
RIRNNIBVRMM ...coiiiiiiiiiiiiieiee e 23
RIRNNIBVVAIUE ... 23
RIRNN]BXRIRMM] ...t 23
RIRNN]BXRMM ... 23
R[RNNIBXvalue........ccoovvveeeiiiiiiiieeeee e 23
RIRNN]R .. 25
RIRNN]—R[RMM] ... 24
RIRNN]—RMM ..coiiiiiiieee e 24
RIRNN]SADYoviiiiiiiieeee e 28
RIRNNISEMM=XX.K ...vveiiiiiiiciiiieeeieee e 26
RIRNNISN ..o 26
RIRNNISRIMMY] ..oeiiiiiiiiiiiieeeeee e 25
RIRNN]SRMM...cccoiiiiiiiiiiiiie e 25
RIRNN]SVAlUE......ccciiiiiiiiiiie e 25
RIRNNISXPMIM ..o 26
RIRNNISZ .o, 26
R[RNN]—VAlUE......coiiiiiiie e 24
RNNIRIRMMY] oo 25
RNN#ER[RMM] .eeeiiiiiieeee e 24
RNNIRMM i 25
RNNERMM i 24
RNNIVAIUE ..o 25
RNNAVAIUE ... 23
RNN*RIRMM].ceeeiiiiiiicee e 25
RN RMM...coii e 25
RNN*VAIUE ... 24
RNN.Z.ooo 21
RNN/RIRMMY] .o 25

phytron

RNNRMML.cooiii e 25
RNNVAIUE.......coiiiii 25
RNN+RIRMM] ..., 24
RNN+FRMM Lo 24
RNNHAVAIUE .., 24
RNN<KRIRMM] oo 24
RNNKRMM Lo 24
RNNSVAIUE ... 24
RNN=R[RMM] ..., 24
RNNZRMM Lo 24
RNN=VAIUE ... 23
RNN>RIRMM] ..o, 24
RNAN>RMM ..o, 24
RNN>VAIUE ... 24
RNNBAR[RMMY] ... 22
RNANBARMM ..o 22
RNNBAVAIUE.......cooiiiiiiic e 22
RNANBANN—MM ... 21
RNANBENN—MM ... 21
RNANBLM L.oviiiiiiiic e 21
RNANBRM ...oviiiiiiiiiicc e 22
RNNBSVAIUE ... 21
RNANBTM ..oiiiiiiii e, 22
RNNBVRIRMM] ... 23
RNNBVRMM ..., 23
RNNBVVAIUEoooiiiiiiiieee e 23
RNNBXR[RMMY] ...eviiiiiiiieeciiciieee e, 23
RNANBXRMM ..o 23
RNNBXVAIUEooiiiiiiiiiiiiie e 23
RNNCOS ..o 25
RNNQW .. 25
RNNR ... 25
RNN—R[RMM] ..., 24
RNANRAND ... 25
RNAN—RMM....ooiiiiiiiii e, 24
RIANSADY ...ttt en e 28
RANSEMM=XX.K...ooviiiiiiiiiiic e 26
RNNSIN .o 25
RNNSN ..o 26
RNNSRIRMM] ..oooiiiiiiiiiie e 25
RANSRMM ..o 25

41

RNNST oo 27
RNNST.Z oo 27
RNNST T i 26
RNNSTY i 27
RNNSTY.Z oo, 27
RNANSTY;M oo 27
RNNSTY;M.Z oo 27
RNNSVAIUEoooiiiiiii e 25
RNNSXPMM .ot 26
RNNSZ ..o 26
RNANTAN (o 25
RNN—VAIUE.......oiiiiiii 24
RNNWY e 28
RNNWY.Z oo, 28
RNNWYM (oo, 28
RNNWYM.Z oo 28
7 29
S0 30
S 30
S A 31
OB 29
SE 29
SH 30
ST e 30
SUL 30
TRIRNN] o 31
TRNN (e 31
TT<RIRNN] ettt 31
TTRNN e 31
TTRVAIUE ..o 31
TT20 oo 31
TTERIRNN] et 31
TToRNN 31
TTVAIUE ..o 31
TTSRIRNN] oot 31
TTSRNN...cooi 31
TTSVAIUL....coiiiiie e 31
TVAIUE ..o 31
UM e 32,33
L0 PP PPPPPPPPPPPPPPRt 32
UE ettt 32

MA 1240-A007 EN

MINILOG

UER@¥ ..ot 32
(0] (g 32
UENN e 32
UEP[NGME]eiiiiiiiieeeee e 32
UEP[name]N*a*.........cccociiiiiiiiiieceeee e 33
UEPINamMeEINNN.......ooviiiiiieiiiet e 32
UEP[name]NR[RNN]cooviiiiiiiiiieieiiieeeee, 33
UEP[Name]NRNN ..., 33
UERNN L, 32
UNFIE® Lo 33
UNN e 32
UNNN e 33
UNPLINAME] ...t 33
UNP[name]N*la*.........cocooeeiiiieniiiieee e 33
UNPNamMe]NNN ...ceeieiiiieie e 33
UNP[Name]NR[RNN] ..o, 33
UNP[Name]NRNN ..., 33
UNRIRNN] .o 33
UNRNN e 33
UP[NAME]..eiiiie i 32,33
UP[Name]N*a........ccoeveriiiiiiiiiiiee e 32,33
UPIN@MEINNN ...t 32
UP[Name]NR[RNN]cooiiiiiiiiiiiieeee 32
UP[Name]NRNN ... 32
UR[RNN] et 32
URNN . 32
XBE oo 34
XEM. oo 34
XEN 34
XSRIRNN] e 35
XSRNN i 35
XVAIUE ... 35
X 34
XT T e 34
XoE 34
XTH 34
XM 34
XEN 34
XSRIRNN] o 34

MA 1240-A007 EN

42

DS o o TR 34
XSVAIUE ..ot 34
KOt 35
KO-t 36
KO ettt 35
KOH M ettt 36
KOt 36
KOl 35
XATR[RNN] oo 37
XAIR[RNNJVVENNZ ..ot 37
XATRNN Lo 37
XATRNNVVENNZ ..o 37
XAIVAIUE ..o 37
XAValuevvENNZ ... 37
XC ettt 34
XEIR[RNN] . eeiiiieii e 37
XErR[RNNJVVENNZ c.ovveeiiiiiiiieeee e, 37
XEMRNN. .o 37
XErRNNVVENNZoooviiiiiiiiiieieeeeeeeeeeeeeees 37
XENVAIUE......eeiiiiiiiicc e 37
XErValUBVVENNZccoviiiiiiiiic e 37
XLF et 36
XMA e 35
XIMD e 35
XPMMR ..o 35
XPMMSRIRNN] .o 35
XPMMSRNN ... 35
XPMMSVAIUE ...t 35
XIRIRNNT .o 36
XIR[RNNJVENNZ......ooviiiiiiiiiie e 36
XIR[RNNJVVENNZ........cooiiiiiiiiece e, 36
XIRNN o 36
XIRNNVENNZ....oooiiiiiie e 36
XIRNNVVENNZ ... 36
XIVAIUE ..ot 36
XIVAIUBVENNZ ... 36
XIValUBVVENNZ........cooiiiiiiiiiiiie e 36
XS e 37
XSN e 37

phytron

4 List of DIN Instructions

The controller programm can also be defined by the DIN instructions for process
conditions and special functions. These standard instructions DIN 66025 can be used in
one program with all the MINILOG instructions.

Instruction

Meaning

G Instructions (Process Conditions)

GO0, GO

Coordinate setting course

Positioning with the speed as high as possible
(high speed activation) without interpolation
by parameter 14.

GO01, G1

Set the linear interpolation

G04Tnn, G4Tnn

Program interrupts with term, programed or defined in the
controller

The program continues automatically.

n=in seconds with digits after the decimal point

Abortion via input 2

GO05, G5 Halt: the program waits for standstill of all axes and after
that is continued

G20Lnn Unconditional jump to line nn

G20L+nn Unconditional jump by nn lines in + direction

G20L-nn Unconditional jump by nn lines in — direction

G20*label* Unconditional jump to *label*

G20L*label* Unconditional jump to *label*

G20LP[name] Unconditional jump to program name in line 1

G21zLnn Conditional jump to line nn z=E or N

G21zL+nn Conditional jump by nn lines in + direction
z=EorN

G21zL-nn Conditional jump by nn lines in — direction
z=EorN

G21z*label* Conditional jump to label z = E oder N

G21zL *label* Conditional jump to label z=E or N

43 MA 1240-A007 EN

MINILOG

Instruction Meaning
G21zLP[name] Conditional jump to program name in line 1
z=EorN
G22Lnn Call the subroutine program nn
Subroutine is marked by G98Lnn in the program
G22*label* Call the subroutine program *label*
G22P[name] Call the subroutine program [name]
G23Lnn Stop the subroutine at once and return to line nn
G23*label* Stop the subroutine at once and return to *label*
G74 Initialisation of all axes — direction
G74 x Initialisation of one axis x= X or Y
G79Lnn Automatic subroutine call at the end of the program line
Subroutine is marked by G98Lxx in the program
G80 End of the automatic subroutine call G79
G90 Positioning absolut value in relation to the reference counter
parameter 20
G911 Incremental positioning
G92 Set the absolute counter (zero offset) parameter 20
G98Lnn Subroutine beginning and declaration nn
Subroutine name maximum 6 characters
G99 Subroutine end
M instructions (Additional Functions)
MO0, MO Programmed halt
The program is continued by setting input 2
MO01, M1 Programmed halt, if input 3 is ON
The program is continued by setting input 2
MO02, M2 End of program
MO03, M3 Spindle ACTIVATED, clockwise rotation
output 1 on; output 2 off
MO04, M4 Spindle ACTIVATED, counterclockwise rotation

MA 1240-A007 EN

44

phytron

Instruction Meaning

output 1 off; output 2 on
MO5, M5 Spindle quick STOP

output 1 off; output 2 off
MO7, M7 Cooling 2 on

output 3 off; output 4 on
M08, M8 Cooling 1 on

output 3 on; output 4 off
M09, M9 Cooling off

output 3 off; output 4 off
M10 Tool holder on; output 5 on
M11 Tool holder off; output 5 off
M68 Clamp component; output 6 on
M69 Unclamp component ; output 6 off

45 MA 1240-A007 EN

MINILOG

5 Parameters

For operating a stepper motor controller several presettings as speed, acceleration ramps
or waiting time are required. These presettings are called Parameters.

Default parameters are stored which can be used in several applications at delivery. You
can read and edit these parameters with MiniLog-Comm.

Several counters are also contained in the list of parameters, which will be continuously
actualized by the program. The counters can be read and some of them can be edited,
too.

e [For each axis separate parameters have to be set. Insert an X or Y to mark the axis in
front of the parameter number (also valid: 1 or 2).

Example: XP15 is the acceleration ramp value for axis X.
e Parameters (e.g. speeds) may be modified several times within a program, too.
e Parameter values can be entered or read.
e P48 and P49 can only be read.

e P19 to P22 are counters. They will be actualized by the program during axis
movement.

e P27 to P49 are special parameters for MCC-2.

MA 1240-A007 EN 46

phytron

5.1

List of Parameters

No.

Meaning

Default

PO1

Type of movement
0 = rotational
Rotating table, 1 limit switch for mechanical zero
(referencing)
1 =linear
for XY tables or other linear systems,
2 limit switches:
Mechanical zero and limit direction —
Limit direction +

0

P02

Measuring units of movement
1 = step

2=mm

3 =inch

4 = degree

PO3

Conversion factor for the thread
1 step corresponds to ...

If PO3 = 1 (steps) the conversion factor is 1.
Computing the conversion factor:
Thread
Numberof steps perrevolution

Conversion factor =

Example:
4 mm thread pitch

200-step motor = 400 steps/rev. in the half step mode

Conversion factor = i =0.01
400

P04

Start/stop frequency

The start/stop frequency is the maximum frequency to
start or stop the motor without ramp. At higher frequen-
cies, step losses or motor stop would be the result of a
start or stop without ramp. The start/stop frequency
depends on various factors: type of motor, load,
mechanical system, power stage.

The frequency is programmed in Hz.

400

P05
P06

not used

PO7

Emergency stop ramp
The frequency is programmed in 4000-Hz/sec-steps.

100 000

47

MA 1240-A007 EN

MINILOG

No.

Meaning

Default

P08

fmax M@P (mechanical zero point)
Run frequency during initializing (referencing)

Enter in Hz (integer value)

4000

P09

Ramp M@P
Ramp during initializing, associated to parameter P08

Enter in 4000-Hz/sec-steps

4000

P10

fmin M@P Run frequency for leaving the limit switch range
Enter in Hz

400

P11

M@P offset for limit switch direction +

Distance between reference point M@P and limit switch
activation

Unit: is defined in parameter P02

P12

M@P offset for limit switch direction —

Distance between reference point M@P and limit switch
activation

Unit: is defined in parameter P02

P13

Recovery time M@P
Time lapse during initialization
Enter in msec

20

P14

fmax Run frequency during program operation
Enter in Hz (integer value) (40 000 maximum)

4000

P15

Ramp for run frequency (P14)
Input in 4000-Hz/sec-steps (4000 to 500 000 Hz/sec)

4000

P16

Recovery time position
Time lapse after positioning

Input in msec

20

P17

Boost (defined in P42)

0 = off

1 = on during motor run

2 = on during acceleration and deceleration ramp

Remarks:
The boost current can be set in parameter P42.

You can select with parameter P17 in which situation the
controller switches to boost current.

P17 = 1 means, the boost current always is switched on
during motor run. During motor standstill the controller
switches to stop current.

MA 1240-A007 EN 48

phytron

No.

Meaning

Default

P18

not used

P19

Electronical zero counter

Used for setting operating points. At standstill of the axis,
P19 can be read or programmed during program
execution.

P20

Mechanical zero counter

This counter contains the number of steps referred to the
mechanical zero (M@P). Can be read at axis standstill. If
the axis reaches the M@P, P20 will be set to zero.

P21

Absolute counter
Encoder, multi turn and also for single turn.

The value of P22 is extended to P21 by software. The
encoder counters have a fixed resolution, e.g. 10 bit (for
single-turn encoders: the resolution is bits per turn), then
the read value repeats. A saw tooth profile of the the
numerical values is produced during a continuous motor
running. This course is "straightened” by software. P20
and P21 will be scaled to the same value per revolution by
P3 and P39 and are therefore directly comparable, see
P36.

P22

Encoder counter
Indicates the true encoder position.

P23

Axial limitation pos. direction +

If the number of steps is reached, the run in + direction is
aborted.

0 = no limitation

P24

Axial limitation neg. direction —

If the number of steps is reached, the run in — direction is
aborted.

0 = no limitation

P25

Compensation for play

Indicates the step number, the target position in the
selected direction is passed over and afterwards is started
in reverse direction.

0 = no compensation for play

P26

not used

P27

Initiator type

0 = PNP normally closed contact (NCC)
1 = PNP normally open contact (NOC)

49

MA 1240-A007 EN

MINILOG

No. | Meaning Default
P 28 to P33 not used
P34 | Encoder type 0
0=no
1 = incremental
2 = serial interface SSI binary Code
3 = serial interface SSI Gray Code
c Connect the correct encoder type!
Do not parameterize an incremental encoder as
SSI. Danger of damage!
P35 | Encoder resolution for SSI encoder 10
Enter max. encoder resolution in bit (max. 31Bit)
P36 | Encoder function 0
0 = counter
P37 |not used
P38 | Encoder preferential direction of rotation 0
0 = + (positive)
1 = — (negative)
P39 | Encoder conversion factor 1
1 increment corresponds to ...
MCC-2/MCC-1 |MCC-2LIN MCC-1 or MCC-2/
in 0.1 A steps in 0.04 A steps MCC-2 LIN
P40 | Stop current 2/2
Values Oto25A Otol A
Input 0to 25 0to 25
P41 |Run current 6/6
Values Oto25A OtolA
Input Oto 25 Oto 25
P42 |Boost current 10 / deactivated
Values Oto25A OtolA
Input Oto 25 Oto 25
P43 | Current delay time in msec 20
P44 | not used
P45 | Step resolution 1 to 256 4

1 = Full step 10 =1/10 step
2 = Half step 16 =1/16 step
4 =1/4 step 128 = 1/128 step
8 = 1/8 step 256 = 1/256 step

MA 1240-A007 EN 50

phytron

No. [Meaning Default
P46 | Current Shaping (CS), also see appendix A 1
0 = Off 1=0n
Recommended setting: P46 =1
P47 | Chopper frequency 1
0 = low 1 = high
The chopper frequency value depends on P46:
If P46 = 0, then is applied: P47 =0: 16 kHz
P47 =1:. 22.5kHz
If P46 = 1, then is applied: P47 =0: 50 kHz
P47 =1: T75kHz
Recommende P47 =1
P48 | Power stage type (read only) (read only)
0 = linear 1 = chopper
P49 | Power stage temperature in °C (read only) (read only)
(only for linear power stage type)
5.2 Parameter Set Transmission to the Controller

Open the *.apa-file (parameter file)

Transmit the *.apa-file to the controller

Message on display: “Parameter set isn't equal to
parameter number of the controller!
Transmit anyway?”

?
Yes - No

Check the controller type

Check the controller’s software version

Compare the parameter sets

Cancel
all 0.K.?
Yes No

Transmit the *.apa-file Cancel

51 MA 1240-A007 EN

MINILOG

6 Programming Example

6.1 General

Line number Program

LNol

LNo2

LNo3

LNo4

LNo5

LNo6
LNo7

LNo8

LNo9

LNo10

EMR2R NN+1 X=H NE+1 XS H A1R2R

E”1S2R NN+1 X=H NN+1 XL+ A1S

EMR2S NN+1 X=H NN+1 XL- A2S

E"3S NN+1 X=H NN+1 N+3

E"4S NN-4 X=H NN-4 N+3

N1
X0- A3S HA3R N1

X+1000 A4S

E"5S1 NN+1 XS H A4R N1

X=H NN-1 A4AR N1

Comment

Reading 2 inputs, if both are 0 and the motor is
running, then stop the motor if not, continue to
next line. If the motor is out of action, reset
output 1 and 2

If the first input is 1 and motor is out of action,
then start running in + direction and set output 1

Input 2 = running in — direction
and set output 2, if the motor runs.

If input 3 =1 and motor is out of action, then
reference run on initiator, then continue
program in line 1.

If input 4 =1 and motor is out of action, then
positioning relatively.

Return to line 1

Execute reference run on initiator — direction
and wait until motor is out of action, then return
to line 1.

Set output 3 during reference run

Positioning 1000 steps in + direction. Set output
4 during positioning.

Wait here until input 5 1, then stop motor and
return to program start, if positioning is finished.

Positioning finished ? If yes, then reset output 4
and return to line 1

6.2 A/D Converter

Program

START
R2SAD1
R3SAD2
R2wW?2
R3W3
N*START*

Comment

Register 2 is set with AD card 0 Ch 1
Register 3 is set with AD card 0 Ch 2

The value of register 2 is displayed in line 2

The value of register 3 is displayed in line 3

Jump back to Start

MA 1240-A007 EN 52

phytron

7 Storing Programs, Parameters and Registers

Programs and parameters can be edited with MiniLog-Comm, transferred to the controller
and stored. During program run registers and counters can be modified by the program.
As long as the controller is powered these data are stored. After switching off the
controller, these data will be handled dependent on the built-in type of memory

components:

Flash-EPROM Memory

Register or counter values modified by the program will not be
stored when you switch off the controller.

If these data are further required, they should be stored with
MiniLog-Comm before switching off and transmitted to the
controller again.

RAM Memory

The first 100 registers are stored in a nonretentive RAM
Advantage: fast access
Disadvantage: data get lost when powered off

As from register 101 the data are stored in a serial RAM
(SRAM):

Advantage: data remain stored after powered off and are
available after power on

Disadvantage: slow access

53 MA 1240-A007 EN

MINILOG

8 Current Shaping CS

Current Shaping (CS) is a circuitry method for delivering a true phase current which
corresponds for a wide range of frequencies to a selected current shape.

If the stepper motor is driven without CS, the true current differs from the specified current,
even in the lower speed frequencies.

The 1/20 sine wave mode results in a current deviation as shown in the following figure, for
average speed:

* without

- CS

ph

”
with CS

T 27T O~

Fig. 1: Current shaping CS

These typical deformations can be observed for all types of curves. They are caused by
the stepper motor inductance and the generator feedback which increases with the motor
speed.

The resulting ,current queue’ makes precise current regulation possible by Current
Shaping (CS= 4 quadrant current regulation), only. The amplitude of the ,current queue’
varies strongly remarked during one revolution and may provoke a motor resonance effect
which causes step losses or desynchronization of the motor.

If the CS function is activated, the ,current queue’ disappears and the resulting current is
close to the ideal shape.

We recommend to use CS in higher current and speed frequency ranges.

The CS function can be activated by the parameter P46 (see chap. 5.1.).

MA 1240-A007 EN 54

phytron

9 Index

A
A/D converter 28, 52

Addressing mode
direct 5
indirect 5
with label 6

Adressing
with label 6

Adressing mode
Indirect 6

Axis Instructions
Free Running 36
Initialization 35
Power stages 34
Read/load parameter 35
Status request 34
Stop 37
Wait 34

B

Baudrate
read 13
set 13

Broadcast 7

C

Checksum 8
Compensation for play 49
Condition byte 6

Current Shaping 54

D
DIN instructions 43

Display instruction 33

E
ELOP 37

E
Flash-EPROM 53

Inputs
Conditional link 11
Logical AND 11
MCC-1 12
Read status 12

Instruction code 4

55

Interface 46

J

Jump instructions
conditional 16
relative 15

L

Label 6
Limit switch 47

M
MiniLog-Comm 5, 53
MZP 36

@)

Outputs
MCC-1 12
read 9
Reading 9
set 9

P

Password
read activation status 17
Set activation status 17

Positioning
absolute 37
in relation to EL@P 37
in relation to M@P 37
relative 36

Process conditions 43

Program and data management
read program 19

Program Call
Ending 17

Programname 6

R

RAM 53
Contents read 14

Reference search run 35

Register
Shifting 21

Register instructions
Arithmetical operations
Cosinus 25
Random number 25
Sinus 25
Square root 25
MA 1240-A007 EN

MINILOG

Tangent 25 conditional call 32
write with A/D converter values 28 End 32
write with decimal value 25

write with line number 26 Synchronous start 30

write with line number emergency stop 26 System Status (only computer mode)
Registers 20, 53 decimal 30
Reset Controller 10 T
S Time loops 31
Send telegram 8 \Y
SRAM 53 Version request 14

Standard functions 43
W

Start-/Stop frequency 47 o)) o
Write instruction via serial interface 10

Subroutines
Break-off 32
Call 32

MA 1240-A007 EN 56

Phytron GmbH

IndustriestralBe 12 — 82194 Grobenzell
T+49-8142-503-0 F +49-8142-503-190
www.phytron.eu

	1 Structure of the Minilog Instructions
	1.1 Instruction Code
	1.2 Design of MiniLog Programs
	1.3 Addressing Mode
	1.4 Conditional Instructions
	1.5 Data and Telegram Format

	2 MINILOG Instructions
	2.1 Outputs
	2.2 A/D Converter
	2.3 Reset
	2.4 Write Instructions via Serial Interface
	2.5 Input requests
	2.6 Program Manipulation at Emergency Stop (ONLY PROG)
	2.7 Program Interruption
	2.8 System Adaption during Program Execution
	2.9 Jump Instructions (ONLY PROG)
	2.10 Repeating of Program Lines
	2.11 Passwort
	2.12 Ending or Interruption of a Program Call (ONLY PROG)
	2.13 Program and Data Management (ONLY PC)
	2.14 Registers
	2.15 Register Instructions
	2.16 System Status (ONLY PC)
	2.17 Store Data into Flash EPROM
	2.18 Time Loops
	2.19 Subroutines (ONLY PROG)
	2.20 Terminal Instructions (also by PC in case of terminal connection)
	2.21 Axes Instructions
	2.22 Function Keys Read Out on Terminal BT24 (also by PC)

	3 List of Minilog Instructions
	4 List of DIN Instructions
	5 Parameters
	5.1 List of Parameters
	5.2 Parameter Set Transmission to the Controller

	6 Programming Example
	6.1 General
	6.2 A/D Converter

	7 Storing Programs, Parameters and Registers
	8 Current Shaping CS
	9 Index

